Fundamental Concepts of Ion-Solid Interactions: Single Ions, 10−12 Seconds

Author:

Davies J.A.

Abstract

An energetic ion undergoes two major mechanisms of energy loss: (1) screened Coulomb collisions with target atoms (nuclear stopping), and (2) interactions with bound or free electrons in the solid (electronic stopping). This article discusses how these two energy-loss processes—and related quantities such as the ion range, collision cascade behavior, sputtering, and spike effects—depend on the experimental parameters of beam energy, atomic number, and target density. We restrict ourselves to an individual incident ion and a time scale (~10−12 s) sufficient for the cascade to fully develop (Figure 1), but short enough for subsequent quenching or diffusion processes to be ignored. What happens at longer times and higher ion f luences, due to diffusion and cascade overlap phenomena, is treated in the article by Brown and Ourmazd in this issue of the MRS Bulletin.Energy-Loss ConceptsFigure 2 summarizes the velocity (ε1/2) dependence of the two energy-loss processes, nuclear stopping (dε/dρ)n and electronic stopping (dε/dρ)e, in terms of the dimensionless Thomas-Fermi (TF) energy, ε, and length, ρ, units derived by Lindhard. The energy unit ε is defined as the ratio a/b where a is the TF screening length (typically, ~0.01 nm) and b is the distance of closest approach in an unscreened head on collision. The following simple relationship exists between TF and lab energies.where M1, Z1, M2, and Z2 are the masses and atomic numbers of projectile and target atoms.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deposition parameters;Materials Science in Microelectronics I;2005

2. Ion-Beam Modification of Materials;digital Encyclopedia of Applied Physics;2003-04-15

3. Threats to ICF reactor materials: computational simulations of radiation damage induced topological changes in fused silica;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;2003-04

4. Application of ion scattering techniques to characterize polymer surfaces and interfaces;Materials Science and Engineering: R: Reports;2002-07

5. Irradiation-induced amorphization: Effects of temperature, ion mass, cascade size, and dose rate;Physical Review B;2000-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3