Molecular-Beam Epitaxy and Device Applications of III-V Semiconductor Nanowires

Author:

Hasegawa Hideki,Fujikura Hajime,Okada Hiroshi

Abstract

A scaling-down of feature sizes into the nanometer range is a common trend in silicon and compound semiconductor advanced devices. That this trend will continue is clearly evidenced by the fact that the “roadmap” for the Si ultralarge-scale-integration circuit (USLI) industry targets production-level realization of a 70-nm minimum feature size for the year 2010. GaAs- and InP-based heterostructure devices such as high-electron-mobility transistors (HEMTs) and heterojunction bipolar transistors (HBTs) have made remarkable progress by miniaturization, realizing ultrahigh speeds approaching the THz range with ultralow power consumption. Due to progress in nanofabrication technology, feature sizes of scaled-down transistors are rapidly approaching the Fermi wavelength of electrons in semiconductors, even at the production level. This fact may raise some concerns about the operation of present-day devices based on semiclassical principles.However, the progress of nanofabrication technology has opened up the exciting possibility of constructing novel quantum devices, based directly on quantum mechanics, by utilizing artificial structures such as quantum wells, wires, and dots. In these structures, new physical effects appear, such as the formation of new quantum states in single and coupled quantum structures, artificial miniband formation in superlattices, tunneling and resonant tunneling in single and multiple barriers, propagation of phase-coherent guided electron waves in quantum wires, conductance oscillations in small tunnel junctions due to single-electron tunneling, and so on. We expect that these effects will offer rich functionality in next-generation semiconductor quantum ULSIs based on artificial quantum structures, with feature sizes in the range of one to a few tens of nanometers. Beyond this, molecular-level ULSIs using exotic materials and various chemical and electrochemical processes other than the standard semiconductor ones may appear, butat present, they still seem to be too far in the future for realistic consideration for industrial applications.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3