Phases of Thin Colloidal Layers

Author:

Murray Cherry

Abstract

Colloids have long been used in applications such as paints, coatings, foods, and many manufacturing processes. Recently, synthetic crystalline arrays of colloidal particles have been used as novel optical materials such as diffractive filters, mimicking the optical properties of opals—natural colloidal crystals made from silica spheres. Colloidal assembly has been proposed to manufacture photonic bandgap materials that can be tailored and that could have many uses in optical devices. The advantages of using colloids to do the self-assembly of novel materials are the relative ease with which monodisperse spheres comparable in size to the wavelength of light can be manufactured and also the demonstrated ease by which some suspensions of monodisperse colloidal spheres crystallize when placed under favorable conditions. Before we can use colloidal crystallization as a controlled self-assembly technique for making novel optical materials, we need (1) to create a means of manufacturing large quantities of monodisperse particles of the desired dielectric behavior, (2) to understand the phase diagram and nucleation phenomena of colloidal suspensions, and (3) to find an easy means to fix the particles in place once they selforganize. In this article, I focus on the second point just mentioned, I give an overview of the phases and some of the complex phenomena encountered in three-dimensional (3D) suspensions and in thin layers of monodisperse colloidal spheres between smooth walls, and I then briefly mention the greater complexity encountered in bidisperse systems. The first and third points will be dealt with elsewhere in this issue.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3