Simulation of Nanometer-Scale Deformation of Metallic and Ceramic Surfaces

Author:

Belak James,Boercker David B.,Stowers Irving F.

Abstract

The precision machining of metal surfaces and the ductile-regime grinding of ceramic surfaces are examples of fundamental cutting processes used in fabricating high-tolerance parts. Components with dimensional tolerances of a few tens of nanometers are currently being produced by direct machining with single-point diamond tools. Despite the ability to fabricate these parts, little is understood of the basic deformation mechanisms that determine how material is removed and deformed, how a tool-tip interacts with a workpiece, how induced surface and subsurface damage occurs, and how cutting tools wear.The key to solving these problems is a fundamental understanding of basic tribological processes such as surface indentation and scraping. Indentation experiments measure the mechanical response of a surface, the onset of plastic deformation, and material hardness. Macroscopic hardness measurements have been shown to correlate well with observed tensile yield strengths. Microscopic indentation studies, where the indentation size is smaller than the material grain size, show new and interesting phenomena. In the pioneering work of Gane and Bowden, no permanent penetration occurred until a critical load was achieved. They related this critical yielding to the theoretical shear strength in the metal, the strength required to create dislocations. Yielding of this sort has since been observed by many investigators.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3