Phenomenological Modeling of Fusion Welding Processes

Author:

David S.A.,DebRoy T.,Vitek J.M.

Abstract

Welding is utilized in 50% of the industrial, commercial, and consumer products that make up the U.S. gross national product. In the construction of buildings, bridges, ships, and submarines, and in the aerospace, automotive, and electronic industries, welding is an essential activity. In the last few decades, welding has evolved from an empirical art to a more scientifically based activity requiring synthesis of knowledge from various disciplines. Defects in welds, or poor performance of welds, can lead to catastrophic failures with costly consequences, including loss of property and life.Figure 1 is a schematic diagram of the welding process showing the interaction between the heat source and the base metal. During the interaction of the heat source with the material, several critical events occur: melting, vaporization, solidification, and solid-state transformations. The weldment is divided into three distinct regions: the fusion zone (FZ), which undergoes melting and solidification; the heat-affected zone (HAZ) adjacent to the FZ, that may experience solid-state phase changes but no melting; and the unaffected base metal (BM).Creating the extensive experimental data base required to adequately characterize the highly complex fusion welding process is expensive and time consuming, if not impractical. One recourse is to simulate welding processes either mathematically or physically in order to develop a phenomenological understanding of the process. In mathematical modeling, a set of algebraic or differential equations are solved to obtain detailed insight of the process. In physical modeling, understanding of a component of the welding process is achieved through experiments designed to avoid complexities that are unrelated to the component investigated.In recent years, process modeling has grown to be a powerful tool for understanding the welding process. Using computational modeling, significant progress has been made in evaluating how the physical processes in the weld pool influence the development of the weld pool and the macrostructures and microstructures of the weld.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Reference93 articles.

1. Mahin K.W. , Winters W. , Krafcik J. , Holden T. , Hosbons R. , and MacEwen S. , in Reference 4, p. 83.

2. Goldak J. , in Reference 4, p. 72.

3. McDill J.M.J. , Oddy A.S. , and Goldak J.A. , in Reference 5, p. 105.

4. Shen Y. , Radhakrishnan B. , and Thompson R.G. , in Reference 5, p. 259.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3