From the de Broglie to Visible Wavelengths: Manipulating Electrons and Photons With Colloids

Author:

van Blaaderen Alfons

Abstract

Because of their size and ability to selforganize, colloidal particles are ideal building blocks for the creation of three-dimensional (3D) structures that can have feature sizes of the order of the wavelength of electrons, photons, or both. This article is too short to provide an extensive literature survey but instead will give some illustrative examples, based on work of the author and co-workers, of how specially developed core-shell particles might be organized on a 3D lattice. These examples are only intended to give an impression of how colloidal-particle systems can be used in the design of new materials with interesting photonic properties.Generally particles are considered colloidal if their size is between several nm and several μm. This range is more or less defined by the importance of Brownian motion—that is, the irregular, overdamped, random displacements the particles make as a result of the not completely averaged-out bombardment of solvent (or gas) molecules. Consequently the lower size range is determined by the size of the solvent molecules. Compared to the particle size, the solvent molecules need to be so small that the time scales of the solvent molecules and particles are so far apart that the solvent molecules can be “integrated out” in a description of the particles. If such a description holds, the solvent can be approximated well by a continuum. The upper size limit is determined by the size at which external fields, like gravity, start to overshadow the effects of Brownian motion.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3