Author:
Barnett B.,Bowen H.K.,Clark K.
Abstract
The use of manmade materials progressed rather slowly until the science and technology of metals, refractories, and glass burst forth in the mid-1800s and continued its infancy through the first decades of the 20th century. In fact, much of the scientific wherewithal in industrial nations focused on the development of manmade materials from the standpoint of properties and fabrication processes. From the discipline of metal physics, which emerged in the 1930s, and from the scientific activities in ceramics, polymers, and electronic materials that blossomed in the 1940s and 1950s, a science and engineering base was established, enabling advanced materials and components to be fabricated, often for specific end-user applications. The molecular engineering of crystals, for example, has its roots in von Hippel's studies of dielectric materials at the Massachusetts Institute of Technology, which began in the 1930s. In this time frame, society, which had primarily used such materials as wood, gypsum, clay, copper, zinc, lead, and iron, turned to a broader set of materials to meet new uses. These new applications required an understanding not only of the composition of matter, but of novel and difficult processes as well. Research specialties broadened.From the late 1950s to the present, the knowledge base for materials and components has exploded. In this period, the scientific and technological field of endeavor—materials science and engineering (MS&E) — evolved from a collection of discrete, disparate arts and crafts with varied amounts of science and practitioners who generally did not stray from their own specialties to a more diffuse field where researchers take a broader approach to materials research and practice.
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献