What Is Shaking in the Sandbox?

Author:

Jaeger Heinrich M.,Knight James B.,Liu Chu-heng,Nagel Sidney R.

Abstract

In 1831, Faraday reported to the Royal Society of London that granular material inside a container, when vibrated, would spontaneously begin to exhibit convection rolls, similar to what is observed in normal fluids when heated from below. This observation indicated that not only can a granular material act like a fluid, but also that vibrations can affect the properties of these materials in important ways. Such phenomena are of immediate practical importance because granular materials exist all around us. We use sand and gravel to build the roads we drive on; we process grain to provide our food supply; we mine ore to provide coal, minerals, and precious commodities; we take powders and pills to cure what ails us. Many of the phenomena observed in granular media are prototypical examples of complex, nonequilibrium behavior that is also found in an increasing number of other systems. As a result, sandpiles have served as a macroscopic and visually appealing metaphor for thinking about a number of microscopic systems that are not directly accessible to our senses. Despite the common occurrence of these materials, their properties are not at all well understood and most of our knowledge centers on the subset of static, equilibrium properties of granular matter. Only over the last few years have physicists and engineers begun to unravel some of the exceptional time-dependent, nonequilibrium properties that these seemingly simple materials exhibit. This review focuses on recent developments in the newly emerging field of granular dynamics and, in particular, addresses the role of vibration in determining the phenomena observed in such media.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Time-dependent behaviour of industrial granular materials under vibration: Modelling and phenomenology.;Chemical Engineering Science;2023-05

2. Bibliography;Segregation in Vibrated Granular Systems;2020

3. The behavior of vibrated systems;Segregation in Vibrated Granular Systems;2020

4. PART II—Discrete Element Method (DEM) Approaches: Dynamic Powder Deposition;Modeling and Simulation of Functionalized Materials for Additive Manufacturing and 3D Printing: Continuous and Discrete Media;2017-12-22

5. Subharmonic instability of a self-organized granular jet;Scientific Reports;2016-03-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3