Electrically Conducting Polymers: Science and Technology

Author:

Epstein Arthur J.

Abstract

For the past 50 years, conventional insulating-polymer systems have increasingly been used as substitutes for structural materials such as wood, ceramics, and metals because of their high strength, light weight, ease of chemical modification/customization, and processability at low temperatures. In 1977 the first intrinsic electrically conducting organic polymer—doped polyacetylene—was reported, spurring interest in “conducting polymers.” Intrinsically conducting polymers are completely different from conducting polymers that are merely a physical mixture of a nonconductive polymer with a conducting material such as metal or carbon powder. Although initially these intrinsically conducting polymers were neither processable nor air-stable, new generations of these materials now are processable into powders, films, and fibers from a wide variety of solvents, and also are airstable. Some forms of these intrinsically conducting polymers can be blended into traditional polymers to form electrically conductive blends. The electrical conductivities of the intrinsically conductingpolymer systems now range from those typical of insulators (<10−10 S/cm (10−10 Ω−1 cm1)) to those typical of semiconductors such as silicon (~10 5 S/cm) to those greater than 10+4 S/cm (nearly that of a good metal such as copper, 5 × 105 S/cm). Applications of these polymers, especially polyanilines, have begun to emerge. These include coatings and blends for electrostatic dissipation and electromagnetic-interference (EMI) shielding, electromagnetic-radiation absorbers for welding (joining) of plastics, conductive layers for light-emitting polymer devices, and anticorrosion coatings for iron and steel.The common electronic feature of pris tine (undoped) conducting polymers is the π-conjugated system, which is formed by the overlap of carbon pz orbitals and alternating carbon-carbon bond lengths.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3