Magnetostrictive Materials

Author:

Hathaway Kristl B.,Clark Arthur E.

Abstract

Smart materials combine sensors, intelligence, and actuators to allow a material to respond to its environment. Magnetostrictive materials can be used as both the sensors and actuators in such materials. High-power magnetostrictive actuators can deliver forces greater than 50 MPa with strains of up to 0.6%, while other magnetostrictive sensor materials can provide hundreds of times the sensitivity of semiconductor strain gages. Magnetoelastic materials also have adaptable elastic moduli which may be varied by external magnetic fields.Magnetostriction is the change in any dimension of a magnetic material caused by a change in its magnetic state. In this article we concentrate on ferromagnetic materials exhibiting Joule magnetostriction, which is a change in linear dimension parallel to an applied magnetic field (see Figure 1), and the reciprocal effect in which the material changes its magnetic state under the influence of applied stress.The phenomenon of magnetostriction has been known for well over a century, since Joule discovered in 1847 the change in length of an iron rod when magnetized. The modern era of magnetostrictive materials began in 1963 with the measurement of nearly 1% magnetostrictive strains at low temperatures in the basal planes of Dy and Tb. A search for magnetostrictive materials with high magnetostriction at room temperature led to the alloying of rare earths with transition metals, culminating in the discovery in 1971 of giant room-temperature magnetostriction in the Laves phase compound TbFe2.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An approach towards different techniques for detection of heavy metal ions and their removal from waste water;Journal of Environmental Chemical Engineering;2024-06

2. Magnetic states of iron borate at high quasi-hydrostatic pressure;Journal of Magnetism and Magnetic Materials;2024-04

3. Magnetodielectric Effect in a Triangular Dysprosium Single‐Molecule Toroics;Advanced Science;2024-01-17

4. Analysis of energy conversion capability among various magnetostrictive materials for energy harvesting;Smart Materials and Structures;2023-10-30

5. Sustainability of Methods for Augmented Ultra-Precision Machining;International Journal of Precision Engineering and Manufacturing-Green Technology;2023-08-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3