Electroless Cu for VLSI

Author:

Cho James S.H.,Kang Ho-Kyu,Wong S. Simon,Shacham-Diamand Yosi

Abstract

Interconnection technology is a key factor in the continual advancement of integrated systems. The rapid increase in device density and circuit complexity through scaling demands a similar increase in the interconnection density. Traditionally, this is achieved by reducing the metal pitch as well as gradually increasing the number of interconnection levels. As the width and spacing of interconnections are scaled down to submicron dimensions at the chip level and micron dimensions at the board level, signal delay, crosstalk, electromigration, and stress-induced migration become important concerns.Cu holds promise as an alternative metallization material to Al alloy due to its low resistivity and ability to reliably carry high-current densities. Cu has a bulk resistivity of 1.68 μΩ-cm, whereas Al has a bulk resistivity of 2.65 μΩ-cm. The only metal with a resistivity lower than Cu is Ag. Since Cu has a melting point and atomic weight both higher than Al, it is expected to have better resistance to electromigration, although properties such as grain structure and resistance to corrosion at high temperatures may also affect electromigration characteristics.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3