Ceramic Powder Compaction

Author:

Glass S. Jill,Ewsuk Kevin G.

Abstract

Powder pressing, either uniaxially or isostatically, is the most common method used for high-volume production of ceramic components. The object of a pressing process is to form a net-shaped, homogeneously dense powder compact that is nominally free of defects. A typical pressing operation has three basic steps: (1) filling the mold or die with powder, (2) compacting the powder to a specific size and shape, and (3) ejecting the compact from the die. To optimize a pressing operation, experienced press operators generally understand and control parameters such as die-fill density, die-wall friction, packing density, and expansion on ejection.Die filling/uniformity influences compaction density, which ultimately determines the size, shape, microstructure, and properties of the final sintered product. To optimize die filling and packing uniformity, free-flowing granulated powders are generally used. Spherical granules (i.e., agglomerates or clusters of finer particles) range in size from ~44 to 400 μm with the average size being ~100–200 μm. They are typically produced from 0.5 to 10-μm median particle-size powders by spray drying a ceramic powder slurry. To produce processable powders, various organic additives are typically added to the slurry prior to spray drying. These include binder(s) for strength, plasticizers that produce deformable granules, and lubricants that mitigate frictional effects. Consistent batching and dispersion of the granulated feed are critical for reproducible and uniform die filling. Granule densities that are 45–55% of the theoretical density (TD), and bulk-powder and die-fill densities of 25–35% TD are typical for ceramic powders.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Reference38 articles.

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3