The Bone-Biomaterial Interface for Load-Bearing Implants

Author:

Pilliar R.M.,Davies J.E.,Smith D.C.

Abstract

Bone-interfacing surgical implants used in orthopedics and dentistry must bear the forces of normal patient activity with minimal risk of mechanical failure of the implant. This requires using appropriate materials and designs for implant fabrication. Additionally, reliable long-term implant attachment to host bone must be assured so that effective force transfer between implant and bone occurs for the patient's lifetime without the implant loosening. With recent advances in implant designs and techniques for their placement, effective implant fixation to bone can last for years (decades) either directly or through an acceptable intermediate fibrous tissue layer at the bone-implant interface. With approximately 500,000 artificial hips implanted annually worldwide and the demand for other joint replacements approaching the same order of magnitude, as well as the recent major growth in the use of dental implants (300,300 projected for insertion in North America alone in 1991), the assurance of effective implant-to-bone fixation is extremely important.Studies of implant biocompatibility have resulted from concerns over the cumulative effects of foreign element release through implant corrosion and wear. Accumulation of this debris in tissues both local and remote to implant sites over the long term is a concern. Of equal importance, for load-bearing implants, are studies to determine the important factors for successful long-term implant fixation. Current trends in design and use of both dental and orthopedic implants reflect the trial-and-error approach that has characterized this field for decades.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Reference52 articles.

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3