Abstract
This article discusses the fundamentals required to produce narrow size distribution fine ceramic powders, make suspensions of fine ceramic powders, and make green bodies with a uniform packing of these particles. In all cases, the interface that fine ceramic powders present to their environment is a very important parameter in controlling the properties of the powders during processing.There are two major classifications for ceramics: structural and functional. The former includes high and low temperature applications. High temperature ceramics are needed for kiln furniture, ladles, catalyst substrates, and insulations. Low temperature uses are represented by the traditional white ware, as well as hardness applications, such as coatings, armor, and cutting tools. Electrical functions include superconductivity, dielectrics, piezoelectrics, and varistors; magnetic functions are represented by ferrite magnets and SQUIDs (Superconducting Quantum Interference Devices); and optical functions include optical and infrared windows, as well as radar windows. Each class of ceramics has different processing problems and, therefore, different research and development directions. The major areas of research advances for structural and functional ceramics are described below.
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献