The Materials Science of Field-Responsive Fluids

Author:

Phulé Pradeep P.,Ginder John M.

Abstract

Scientists and engineers are most familiar with single-crystal or polycrystalline field-responsive or “smart” materials with responses typically occurring while the materials remain in the solid state. This issue of MRS Bulletin focuses on another class of field-responsive materials that exhibits a rapid, reversible, and tunable transition from a liquidlike, free-flowing state to a solidlike state upon the application of an external field. These materials demonstrate dramatic changes in their rheological behavior in response to an externally applied electric or magnetic field and are known as electrorheological (ER) fluids or magnetorheological (MR) fluids, respectively. They are often described as Bingham plastics, and exhibit a strong field-dependent shear modulus and a yield stress that must be overcome to initiate gross material deformation or flow. Prototypical ER fluids consist of linear dielectric particles (such as silica, titania, and zeolites) dispersed in nonconductive liquids such as silicone oils. Homogeneous liquid-crystalline (LC) polymerbased ER fluids have also been recently reported. MR fluids are based on ferromagnetic or ferrimagnetic, magnetically nonlinear particles (e.g., iron, nickel, cobalt, and ceramic ferrites) dispersed in organic or “aqueous liquids. Unlike ER and MR fluids, ferrofluids (or magnetic fluids), which are stable dispersions of nanosized superparamagnetic particulates (~5–10 nm) of such materials as iron oxide, do not develop a yield stress on application of a magnetic field. Applications of ferrofluids are primarily in the area of sealing devices (see Rosensweig for more information). Since ferrofluids are well-known and have been extensively discussed elsewhere in the literature, they will not be treated in detail here.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Reference11 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3