Organic and Inorganic Spin-On Polymers for Low-Dielectric-Constant Applications

Author:

Hacker Nigel P.

Abstract

Low-dielectric-constant materials (k < 3.0) have the advantage of facilitating manufacture of higher performance integrated-circuit (IC) devices with minimal increases in chip size. The reduced capacitance given by these materials permits shrinkage of spacing between metal lines to below 0.25 μm and the ability to decrease the number of levels of metal in a device. The technologies being considered for low-k applications are chemical vapor deposition (CVD) or spin-on of polymeric materials. For both types of processes, there are methods and materials capable of giving k < 3.0 dielectric stacks. This article will focus on the spin-on approach and discuss the properties of both organic and inorganic spin-on polymers.While CVD SiO2 has been the mainstay of the industry, spin-on materials are appropriate for many dielectric applications. Polyimides have applications as electrical insulators, and traditional spin-on silicates or siloxanes (k > 3.0) have served as planarizing dielectrics during the last 15 years. The newer spin-on polymers have greatly enhanced mechanical, thermal, and chemical properties, exhibiting lower dielectric constants than the traditional materials.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Reference26 articles.

1. Tobben D. , Weigand P. , and Shapiro M. , presented at Symposium H, Boston, Materials Research Society Meeting, December 3, 1996.

2. Highly porous interlayer dielectric for interconnect capacitance reduction

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3