Pulsed Laser Deposition

Author:

Hubler Graham K.

Abstract

Research on materials grown by pulsed laser deposition, or PLD, has experienced phenomenal growth since late 1987 when T. Venkatesan (one of the authors for this issue) and co-workers pointed out that extreme nonequilibrium conditions created by pulsed laser melting of YBaCuO allowed in-situ preparation of thin films of this high transition temperature (Tc) superconducting material. Since then, PLD has emerged as the primary means for high throughput deposition of high-quality superconducting thin films for research and devices. This probably came as no surprise to J.T. Cheung (another of this issue's authors), who performed original research in this area and tirelessly labored during the 1980s to convince a skeptical audience of the advantages of PLD.Along with the success of PLD in the arena of high-temperature superconductivity, however, is the explosion of activity in the deposition of many other materials, made possible by the unique features of pulsed laser deposition, materials previously not amenable to in-situ thin film growth. Creative minds reasoned that since PLD can deposit a demanding, complex material such as the perovskite structure Y1Ba2Cu3O7-δ, why not other perovskites or multicomponent oxide materials? It also turns out that the range of properties of multicomponent oxides is virtually limitless. They can be metallic, insulating, semiconducting, biocompatable, superconducting, ferroelectric, piezoelectric, and so on. One is not limited to the properties of elements or binary compounds on which the electronics and microelectronics industries are based. Indeed, in a recent review of hybrid ferromagnetic- semiconductor structures, G. Prinz states, “… there has been little work devoted to incorporating magnetic materials into planar integrated electronic (or photonic) circuitry there are potential applications that have no analog in vacuum electronics but that remain unrealized, awaiting the development of appropriate materials and processing procedures.” In pulsed laser deposition, we may well have in hand the “appropriate processing procedure” to deposit sequential epitaxial layers of high quality materials that possess profoundly different properties.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3