Growth of Single Crystal Fibers

Author:

Feigelson Robert S.

Abstract

Single-crystal fibers represent perhaps one of the most underexplored areas of material science. Despite some early interest and excitement 30 years ago, the lack of immediate applications led to a decline in research activity, and until recently, little was known about their growth behavior and properties. During the past few years single-crystal fiber research has been revived and preliminary results have stimulated considerable interest in the scientific community.At present, the most extensive and broadly based single-crystal fiber program is at Stanford University, where the focus has been on studying fibers for optical applications. This program emerged from a desire to combine the light-guiding properties of fiber geometries with the unique physical properties of crystalline materials, as was done during the last decade for glass fiber applications. Such materials could lead to a range of novel devices with higher efficiencies than possible in bulk crystals. But single-crystal fiber growth technology may have an even broader applicability. While single-crystal fibers of semiconductor, superconductor, and high strength materials could play an important role in future device applications, an important current use for the single-crystal fiber growth technology is in preparing single crystals of a wide variety of materials for property evaluation. Fiber crystals may have much higher crystalline perfection than bulk crystals of the same composition, making them useful for studying the intrinsic properties of a material and for improving device performance. Other areas of interest which have been identified include metastable phase formation and the growth of oriented ferroic domain and multiphase structures.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3