Abstract
Magnesium can reversibly store about 7.7 wt% hydrogen, equivalent to more than twice the density of liquid hydrogen. This high storage capacity, coupled with a low price, suggests that magnesium and magnesium alloys could be advantageous for use in battery electrodes and gaseous-hydrogen storage systems. The use of a hydrogen-storage medium based on magnesium, combined with a fuel cell to convert the hydrogen into electrical energy, is an attractive proposition for a clean transportation system. However, the advent of such a system will require further research into magnesium-based alloys that form less stable hydrides and proton-conducting membranes that can raise the operating temperature of the current fuel cells.Following the U.S. oil crisis of 1974, research into alternative energy-storage and distribution systems was vigorously pursued. The controlled oxidation of hydrogen to form water was proposed as a clean energy system, creating a need for light and safe hydrogen-storage media. Extensive research was done on inter-metallic alloys, which can store hydrogen at densities of about 1500 cm3-H2 gas/ cm3-hydride, higher than the storage density achieved in liquid hydrogen (784 cm3/cm3 at –273°C) or in pressure tanks (˜200 cm3/cm3 at 200 atm). The interest in metal hydrides accelerated following the development of portable electronic devices (video cameras, cellular phones, laptop computers, tools, etc.), which created a consumer market for compact, rechargeable batteries. Initially, nickel-cadmium batteries fulfilled this need, but their relatively low energy density and the toxicity of cadmium helped to drive the development of higher-energy-density, less toxic, rechargeable batteries.
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献