Magnetism in the High Tc Family of Compounds

Author:

Sinha Sunil K.

Abstract

The most intriguing aspect of the new “high Tc” superconductors is that we still have no consensus about the nature of the basic mechanism for superconductivity in these materials, nor about why Tc is so much larger than in conventional superconductors. As is now well known, these materials include compounds of the type La2-xSrxCu2O4-y (where Sr can also be replaced by Ba) in which the maximum Tc attained is between 35 K and 40 K, and of the type YBa2Cu3O7-δ (where Y can also be replaced by most rare-earth atoms) in which the maximum Tc attained is about 98 K. Very recently, new compounds such as Bi2Sr2CaCu2O8+y have been discovered where Tc's of up to 120 K have been observed, but the physical properties of these at the time of writing are much less well known. The interesting thing about all these compounds is that they all result from doping of cupric oxide insulators, and they all contain planes of Cu-O atoms.Perhaps not entirely by coincidence, high Tc superconductivity thus occurs in a class of materials, namely transition metal oxides, whose electronic ground states are currently least well understood in terms of conventional band theory. It is now generally accepted that the d-shells of transition metals ions (including Cu) have associated with them a fairly large Coulomb repulsion that makes it energetically unfavorable for two holes to be on the same d-shell simultaneously. For Cu, the energy U is estimated to be between 4 and 8 eV. This implies that Cu++ (d9 configuration) is favored, while Cu+++ (d8 configuration) is not. This is in accordance with spectroscopic measurements of these compounds.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Reference26 articles.

1. Harshman D. et al. (to be published); Y.J. Uemura et al., Phys. Rev. Lett. 59 (1987) p. 1045; N. Nishida et al., Jpn. J. Appl. Phys., Pt. 2, 26 (1987) p. L1856.

2. Two-dimensional antiferromagnetic quantum spin-fluid state inLa2CuO4

3. Influence of oxygen defects on the physical properties ofLa2CuO4−y

4. Antiferromagnetism inLa2CuO4−y

5. Hirsch J. et al. (to be published).

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3