Author:
Leibler Ludwik,Mourran Ahmed
Abstract
Studying the properties of endanchored polymer layers has been a fashionable occupation for numerous physicists, chemists, and material scientists for more than 10 years. Theoreticians have realized that grafted macromolecules are nice statistical objects wriggling around under thermal motion, which give rise to nontrivial long-range entropic effects. These can be described by elegant scaling laws and analogies with quantum or classical mechanics. For experimenters the area turned out to be a marvelous playground in which both very simple and sophisticated techniques such as x-ray or neutron scattering and reflectivity, nuclear magnetic resonance (NMR), Rutherford backscattering, and optical and atomic force microscopy (AFM) have been used to discover interesting and subtle phenomena. All this effort was also motivated by the importance of grafted layers in applications such as paints, adhesives, lubricants, colloidal stabilizers, and composite materials. By anchoring a thin, soft polymer layer to a solid surface, one can tune the surface properties. In this short article, we will discuss how the wetting and spreading of liquids and polymer melts can be profoundly altered by the presence of such protective layers.
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献