Applications of Ultrasound to Materials Chemistry

Author:

Suslick Kenneth S.

Abstract

This article will begin with an introduction to acoustic cavitation, the physical phenomenon responsible for the chemical effects of ultrasound. Some recent applications of sonochemistry to the synthesis of nanophase and amorphous metals, as well as to heterogenous catalysis, will then be highlighted. Finally, we will examine the effects of ultrasound on metal powders in liquid-solid slurries.The chemical effects of ultrasound do not come from a direct interaction of sound with molecular species. Ultrasound has frequencies from around 15 kilohertz to tens of megahertz. In liquids, this means wavelengths from centimeters down to microns, which are not molecular dimensions. Instead, when sound passes through a liquid, the formation, growth, and implosive collapse of bubbles can occur, as depicted in Figure 1. This process is called acoustic cavitation.More specifically, sound passing through a liquid consists of expansion waves and compression waves. As sound passes through a liquid, if the expansion wave is intense enough (that is, if the sound is loud enough), it can pull the liquid apart and form a bubble (a cavity). The compression wave comes along and compresses this cavity, then another expansion wave re-expands it. So we have an oscillating bubble going back and forth, say, 20,000 times a second.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 147 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3