Membrane Gas Separation Principles

Author:

Fain D. E.

Abstract

Some industrial processes require the separation of gas or vapor mixtures. Methods for separating the mixtures vary from separation by diffusion to separation by distillation. Many of the methods, such as distillation, are energy intensive. Membranes can reduce the energy required to produce a desired separation. Because of their corrosion resistance and high temperature applications, engineered inorganic membranes can significantly increase the efficiency of many of these processes. The magnitude of the separation factor, available operating conditions, enrichment, yield, and cost of the membranes play a large role in determining whether membranes can be more economical than other methods of separation. These factors have to be evaluated on a case-by-case basis.Martin Marietta Energy Systems' Office of Technology Transfer conducted a preliminary market survey with the assistance of the University of Tennessee and commercial marketing experts in inorganic membranes. The survey assumed that membranes could be made with permeabilities a factor of 3 larger and with cost per unit area a factor of 3 smaller than is currently available. The results indicated that active implementation of such technology could expect to achieve the following results:• $2 billion dollar per year sales market,• $16.6 billion increase in the national GDP,• $2 billion improvement in the balance of trade, and• 6 quads per year decrease in energy use.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Carbon Nanotubes-Based Mixed Matrix Membranes in Separation Technology;Carbon Composite Catalysts;2022

2. State-space model for transient behavior of transport membrane condenser;International Journal of Heat and Mass Transfer;2021-02

3. High Performance Membrane for Natural Gas Sweetening Plants;Membrane Technology Enhancement for Environmental Protection and Sustainable Industrial Growth;2020-12-15

4. Entropy generation analysis of heat and water recovery from flue gas by transport membrane condenser;Energy;2019-05

5. Characterization of an Alumina Membrane Using Single Gas Permeation;Transactions on Engineering Technologies;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3