Metallurgical and Chemical Applications of Intermetallics

Author:

Westbrook Jack H.

Abstract

Practical metallurgical application of intermetallic compounds (IMCs) occurred more than 3,000 years before they were recognized as distinct entities in alloys. Pliny, The Elder (A.D. 23–79) recorded in his encyclopedia a then old practice: the use of mercury both to recover gold from sands and other dispersed sources, and to gild less-noble metal objects. In both cases, the key factor is the formation of a Au-Hg intermetallic compound (amalgam) stable at room temperature but readily decomposable on heating to produce solid gold. An illustration of the Au-recovery process, reproduced from Ercker (1574) appears in Figure 1. Use of the amalgam processes for silver apparently occurred later. Bronze mirrors were silver-coated with the amalgam process by the Chinese in the second century B.C., and silver was recovered from crushed sulfide ores using mercury in the famous Potosi process (1566, but probably known much earlier).The key properties of intermetallics that make possible their diverse applications in chemical and metallurgical processes are their high melting points relative to one or all of their constituent elements, their often sharply defined composition, their brittleness, and their controllable reactivity/stability–that is, systems can be chosen such that a stable intermetallic forms easily at room or low temperatures that is nonetheless readily decomposable at a higher temperature. Once the intermetallic forms however, a useful physical property (e.g., hardness or conductivity) or chemical property (oxidation, sulfidation, corrosion resistance, nonsticking quality, etc.) may be that which is ultimately exploited in use.We will review these two classes of applications using representative examples from both process metallurgy and chemistry.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Reference6 articles.

1. The applied physics of quasicrystals

2. Overview No. 104 The physical and mechanical properties of NiAl

3. Dubois J.M. and Weinland P. , French Patent No. 8,810,559 (1988).

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Plastic deformation of ordered intermetallic alloys;The Deformation and Processing of Structural Materials;2005

2. Atomistic modelling of TiAl I. Bond-order potentials with environmental dependence;Philosophical Magazine;2003-01

3. An atomistic study of interfacial diffusion in lamellar TiAl alloys;Interface Science;2003

4. Functional and Smart Materials;Wiley Encyclopedia of Electrical and Electronics Engineering;1999-12-27

5. An atomistic study of segregation to lamellar interfaces in non-stoichiometric TiAl alloys;Acta Materialia;1998-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3