Coatings for Improved Vacuum Materials

Author:

Moriyama K.

Abstract

For the past 10 years, reactively deposited films of titanium nitride, TiN, have been applied to cutting tools such as drills, hob cutters, and endmills. A nominal film thickness of 2–4 μm has been shown to give excellent resistance to abrasion and corrosion and to extend tool life three times or more. This is attributable to the physical properties of TiN, which include microhardness of 1,800 kg/mm2 and surface friction approximately one-third that of high-speed tool steel. Corrosion resistance is realized from the dense, fine-grain equiaxed structure of the inert TiN film. Additional applications range from decorative use based on its goldlike appearance to use as a diffusion barrier in semiconductor devices.More recently, TiN has found application as a high quality coating for components used in ultrahigh vacuum (UHV and XHV) system apparatus and especially in high energy particle accelerators. This article discusses the application of TiN coatings to ultrahigh vacuum systems and high energy particle accelerators.The native oxides which form on stainless steel and aluminum tend to be porous and trap large amounts of water vapor and other gases. These trapped gases can be partially removed by vacuum baking, although for particle beam devices in which beam-induced desorption is at least as important as the thermal outgassing rate, an extensive beam-conditioning process is required to get rid of the final vestiges of trapped gas. The oxide surfaces have low sticking coefficients for the adsorption of incident gas molecules, but the oxides have much higher secondary electron yields than the clean metals and consequently have very high beam-induced desorption rates.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3