Chemical Products from Lignocellulosics

Author:

Glasser Wolfgang G.

Abstract

Lignocellulosics represent that mass of organic matter produced by land-growing plants in the form of trees, shrubs, and agricultural crops. Lignocellulosics are renewable, and they sustain living conditions on our planet by recycling carbon dioxide to oxygen. Lignocellulosics serve the planet as a carbon sink. Chlorophyll is the essential catalyst and sunlight the necessary energy source that drive this carbon dioxide reduction to an organic mass that varies little from the carbon-to-oxygen ratio of carbon monoxide.There is, however, no distinct “lignocellulose” molecule. Instead, nature has found it necessary to formulate a multiphase material consisting of cellulose, hemicelluloses, and lignin. The composition of this multiphase material can be likened to a fiber-reinforced organic glass where cellulose serves as lightweight fiber, lignin serves as a continuous (glassy) matrix, and hemicelluloses serve as coupling agents. The overall composition suggests that there is 35–45% cellulose, 25–35% hemicelluloses, 20–25% lignin, and various minor constituents.In chemical terms, cellulose is a linear homopolysaccharide with a high degree of crystallinity. It consists of 1,4-β-linked D-glucopyranose units connected in syndiotactic fashion (on alternating sides of the main chain). Cellulose molecules in nature occur with molecular weights exceeding 2 million. Hemicelluloses, by contrast, are branched heterosaccharides of lesser molecular weight. They rarely exceed 20,000 daltons. Hemicelluloses are either rich in glucomannan chains (softwoods), or they consist primarily of branched xylans (hardwoods and annual crops). The chemical composition of hemicelluloses is extraordinarily similar to cellulose (i.e., polyanhydro-pyranoside), but their morphological structure is vastly different.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Reference16 articles.

1. Multtphase Materials with Lignin. III. Polyblends with Ethylene-Vinyl Acetate Copolymers

2. Lignin Derivatives. I. Alkanoates

3. de Oliveira W. and Glasser W.G. , J. Appl. Polym. Sci., in press.

4. Glasser W.G. , Ravindran G. , Samaranayake G. , and Jain R.K. , manuscript in preparation.

5. The chemistry of several novel bioconversion lignins

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. System integration of functionalized natural materials;MRS Bulletin;2017-05

2. Preceramic Paper-Derived Ceramics;Journal of the American Ceramic Society;2008-11

3. Analysis of the topochemical effects of dielectric-barrier discharge on cellulosic fibers;Cellulose;2005-04

4. Biomorphous ceramics from lignocellulosics;Journal of the European Ceramic Society;2001-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3