Abstract
Static electron microscopy provides views of microstructures frozen in time. For many problems, such snapshots give a clear picture of the material's characteristics after a particular processing step, but for other problems it is the evolution of the microstructure itself, its mechanisms and kinetics, that are important to understand. For this class of problem, in situ electron microscopy is an indispensable tool because it can provide real-time dynamic observations of processes, showing, for example, where dislocations nucleate, how a particle grows, by what mechanism and how fast an interface migrates. The major limitation to such experiments is that foils must be extremely thin to be electron transparent. The proximity of the free surfaces can have a strong effect on the dynamic equilibrium. For that reason, high-voltage electron microscopes are particularly useful for in situ TEM experiments. The greater penetration depth of high energy electrons makes it possible to observe processes in foils that are thick enough to avoid the dominant influence of the surfaces.This article will describe some experiments in which the dynamic behavior of precipitates in a simple alloy system was examined during in situ temperature cycling in order to understand the effect of bicrystal anisotropy on the characteristics of interface motion.
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献