Membranes and Membrane Processes

Author:

Burganos Vasilis N.

Abstract

Membrane separation science has enjoyed tremendous progress since the first synthesis of membranes almost 40 years ago, which was driven by strong technological needs and commercial expectations. As a result, the range of successful applications of membranes and membrane processes is continuously broadening. An additional change lies in the nature of membranes, which is now extended to include liquid and gaseous materials, biological or synthetic. Membranes are understood to be thin barriers between two phases through which transport can take place under the action of a driving force, typically a pressure difference and generally a chemical or electrical potential difference.An attempt at functional classification of membranes would have to include diverse categories such as gas separation, pervaporation, reverse osmosis, micro- and ultrafiltration, and biomedical separations. The dominant application of membranes is certainly the separation of mixed phases or fluids, homogeneous or heterogeneous. Separation of a mixture can be achieved if the difference in the transport coefficients of the components of interest is sufficiently large. Membranes can also be used in applications other than separation targeting: They can be employed in catalytic reactors, energy storage and conversion systems, as key components of artificial organs, as supports for electrodes, or even to control the rate of release of both useful and dangerous species.In order to meet the requirements posed by the aforementioned applications, membranes must combine several structural and functional properties.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Reference2 articles.

1. Fundamentals of inorganic membrane science and technology

2. Strathmann H. , presented at the AIChE Annual Meeting, 1997.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3