Using Microstructure to Attack the Brittle Nature of Silicon Nitride Ceramics

Author:

Becher Paul F.,Hwang Shyh-Lung,Hsueh Chun-Hway

Abstract

The evolution of silicon nitride ceramics over the last two decades has brought about the advancement of materials which were first fabricated by the application of mechanical pressure and temperature (i.e., hot pressing) resulting in high flexure strengths (e.g., 700–800 MPa) but rather poor resistance to creep at temperatures of ~1200°C. At the same time, these ceramics remained quite brittle with fracture-toughness values of 4–5 MPa m½, such that strengths were very sensitive to flaw or crack sizes. As a result, measured strengths exhibited considerable scatter, as reflected by a low Weibull modulus. In the ensuing years, approaches were sought to develop more economical methods of fabricating silicon nitride components by densifying to near-net shape. Methods were also sought for increasing the elevated-temperature reliability by minimizing the additives employed to promote densification and by utilizing additives that produced more stable and refractory grain boundary phases. The application of gas-pressure sintering methods, utilizing gaseous environments of 10–100 atmospheres, led to the ability to produce dense near-net shaped components with very high fracture strengths (e.g., ≥1000 MPa). At the same time, advances in processing and additive chemistry, sometimes combined with additional fabrication methods (e.g., hot isostatic pressing), have resulted in ceramics with excellent creep resistances at temperatures in excess of 1300°C. Some of these silicon nitride ceramics exceed the elevated-temperature capability of superalloys by 200°C. The initial desire for light-weight ceramic components that could sustain tensile loads for high-temperature applications is, indeed, beginning to bear fruit. One of the most impressive examples of the development of a complexly shaped lightweight component is the silicon nitride turbocharger rotor used in a number of Japanese automobiles, which is currently manufactured at a cost approaching that of the opposing superalloy rotor and provides exceptionally high mechanical reliability and production yields. Currently, there are also earnest efforts to incorporate silicon nitride valves for engines, as well as in a variety of other components (e.g., combustion swirl chambers, valve-lifter pads, etc.). The acceptance and use of this class of brittle materials, which were once considered prohibitively expensive for fabrication into complex shapes and not suited for such applications, is a remarkable testimony of the progress that has been made.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Reference16 articles.

1. Grain Size Dependence of the Fracture Toughness of Silicon Nitride Ceramics

2. Becher P.F. and Hsueh C-H. , “The Influence of Reinforcement Content and Diameter on the R-Curve Response in SiC Whisker-Reinforced Alumina,” submitted to J. Am. Ceram. Soc.

3. Toughening Behavior in Sic-Whisker-Reinforced Alumina

4. Mitomo M. and Hirosaki N. , this issue.

5. Microstructural Contributions to the Fracture Resistance of Silicon Nitride Ceramics

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3