Kinetic Pathways to Strain Relaxation in the Si-Ge System

Author:

Jesson D.E.,Chen K.M.,Pennycook S.J.

Abstract

The strain-induced transition of a planar film to a three-dimensional island morphology is presently a significant issue in the growth of semiconductor thin films. Strain-induced roughening can be problematic in the fabrication of coherently strained device structures where it is important to understand the early stages of the transition to avoid or suppress three-dimensional (3D) growth. On the other hand, the strain-driven transition is beneficial for the self-assembly of quantum dots where it is necessary to control the size distribution and self-organizing behavior of the islands. In both cases, it is clearly important to identify and understand the kinetic pathways to island formation. From a more basic perspective, the strain-induced transition of epitaxial films allows us to study in detail the interplay between elastic stresses and surface energy in a carefully controlled experimental environment. One would therefore hope that the lessons learned from model semiconductor systems will be of relevance to understanding related phenomena in other areas of materials science and physical metallurgy.Ihe strain-induced two-dimensional (2D)-to-3D transition in the Si-Ge system is manifested by a rich variety of observed surface morphologies. In the case of pure Ge on Si(OO1), the 4% misfit strain induces the formation of so-called hut clusters with curious elongated shapes. Such islands form almost immediately after the deposition of a wetting layer. In the case of lower misfit alloys, a more gentle ripple morphology can result that develops far from the interface. A general trend in all of the experiments is the decreasing size of typical morphological features with increasing misfit stress. In this article, largely guided by our experimental results, we adopt a nucleation and growth description of the 2D-to-3D transition. This approach appears particularly well-suited to explaining the wide spectrum of morphological development present in the Si-Ge system.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3