Three Dimensional X-Ray Computed Tomography in Materials Science

Author:

Kinney J.H.,Johnson Q.C.,Bonse U.,Nichols M.C.,Saroyan R.A.,Nusshardt R.,Pahl R.,Brase J. M.

Abstract

Imaging is the cornerstone of materials characterization. Until the middle of the present century, visible light imaging provided much of the information about materials. Though visible light imaging still plays an extremely important role in characterization, relatively low spatial resolution and lack of chemical sensitivity and specificity limit its usefulness.The discovery of x-rays and electrons led to a major advance in imaging technology. X-ray diffraction and electron microscopy allowed us to characterize the atomic structure of materials. Many materials vital to our high technology economy and defense owe their existence to the understanding of materials structure brought about with these high-resolution methods.Electron microscopy is an essential tool for materials characterization. Unfortunately, electron imaging is always destructive due to the sample preparation that must be done prior to imaging. Furthermore, electron microscopy only provides information about the surface of a sample. Three dimensional information, of great interest in characterizing many new materials, can be obtained only by time consuming sectioning of an object.The development of intense synchrotron light sources in addition to the improvements in solid state imaging technology is revolutionizing materials characterization. High resolution x-ray imaging is a potentially valuable tool for materials characterization. The large depth of x-ray penetration, as well as the sensitivity of absorption crosssections to atomic chemistry, allows x-ray imaging to characterize the chemistry of internal structures in macroscopic objects with little sample preparation. X-ray imaging complements other imaging modalities, such as electron microscopy, in that it can be performed nondestructively on metals and insulators alike.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3