Genetic Engineering of Polymeric Materials

Author:

Tirrell David A.,Fournier Maurille J.,Mason Thomas L.

Abstract

Polymerization reactions are generally divided into two broad classes: step growth or polycondensation reactions (examples would include the synthesis of polyamides and polyesters), and chain growth processes such as those used to prepare polyethylene or polystyrene. These processes are illustrated schematically in Figure 1.The statistical nature of step and chain growth polymerization processes ensures that the products of such reactions must be heterogeneous. Conventional polymeric materials thus consist of mixtures of chains, often characterized by relatively broad distributions of chain length or composition. In many materials applications, this kind of molecular heterogeneity is advantageous since it suppresses crystallization and helps to preserve desirable properties such as optical clarity or elasticity. On the other hand, synthetic developments that afford improved control of macromolecular architecture have had profound impact on materials science and technology. As examples, one can cite the discovery of Ziegler-Natta polymerization, now used to prepare billions of pounds per year of crystalline polyolefins, or the development of living anionic polymerization of olefins, which led directly to block copolymers and the commercially important thermoplastic elastomers.The advent of recombinant DNA methods has provided a basis for developing polymeric materials characterized by essentially absolute uniformity of chain length, sequence, and stereochemistry. This article outlines the principles governing the cloning and expression of artificial genes, and examines the potential role of artificial proteins in polymer materials science.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Polymers in tissue engineering and regenerative medicine;Handbook of Polymers in Medicine;2023

2. Elastin-Like Recombinamer Hydrogels for Improved Skeletal Muscle Healing Through Modulation of Macrophage Polarization;Frontiers in Bioengineering and Biotechnology;2020-05-14

3. Trends in the design and use of elastin-like recombinamers as biomaterials;Matrix Biology;2019-11

4. Polymer Synthesis;Graduate Texts in Physics;2019

5. Elastin-Like Polymers: Properties, Synthesis, and Applications;Encyclopedia of Polymer Science and Technology;2017-08-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3