Author:
Embury J.D.,Hill Mary Ann,Spitzig W.A.,Sakai Y.
Abstract
The development of high-field magnets for pulsed-field applications is the subject of considerable research activity throughout the world. Induced field strengths in excess of 30 T can be produced only as pulses generated by the discharge of energy, e.g., from a capacitor bank into a resistive solenoid. A variety of electromagnetic design issues relate to the pulse duration, field strength, and volume of the coil; however, from the viewpoint of materials selection and coil design, there are two salient property requirements: (1) high electrical conductivity to minimize the temperature rise due to the flow of current in the coil, and (2) high mechanical strength to resist the Lorentz forces exerted during the pulse. Such forces can result in catastrophic failure, as illustrated in Figure 1, because the coil is, in essence, stressed in the manner of an internally pressured cylindrical vessel. At lower stresses, plastic distortion of the coil is observed.
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献