The Influence of the Thermal Treatment of Hydroxylapatite Scaffolds on the Physical Properties and the Bone Cell Ingrowth Behaviour

Author:

Woesz Alexander,Rumpler Monika,Manjubala Inderchand,Pilz Christine,Varga Franz,Stampfl Juergen,Fratzl Peter

Abstract

AbstractThe material bone consists of a biopolymer matrix (collagen) reinforced with mineral nanoparticles (carbonated hydroxylapatite), forming a natural composite which builds up a dense shell on the exterior and a network of struts with a mean diameter of 200μm in the core of many bones. The architecture of the foamy inner part of bones (spongiosa) is determined by loading conditions. The architecture strongly influences the mechanical properties of cellular solids together with the apparent density and the material it consists of. In addition, the ingrowth of bone cells into porous implants depends on pore size, size distribution and interconnectivity. From this it is clear that the possibility to design the architecture of a bone replacement material is beneficial from a biological as well as a mechanical point of view. Our approach uses rapid prototyping methods, ceramic gelcasting and sintering to produce cellular structures with designed architecture from hydroxylapatite and other bioceramics.The influence of sintering temperature and atmosphere on the physical properties of these scaffolds was investigated with x-ray diffraction and scanning electron microscopy. Furthermore, the cell ingrowth behaviour was determined in cell culture experiments, using the praeosteoblastic cell line MC3T3-E1, derived from mouse calvariae. The cell ingrowth behaviour was evaluated during a culture period of two and three weeks, by light microscopy and afterwards by histology after embedding and Giemsa-staining.The phase composition of the material was found to change with increasing sintering temperature and its surface characteristics was influenced by the sintering atmosphere. These changes also affected the cell ingrowth behaviour. In some experiments, the osteoblasts-like cells were found to cover the whole external and internal surface of the scaffold. The cells produced extracellular matrix consisting of collagen, which eventually filled nearly all the pores. In particular, the cells had the tendency to fill any crack or opening in the scaffolds, and to generally smooth the surfaces.In conclusion, rapid prototyping and ceramic gelcasting allows the freeform fabrication of porous bioceramics with controlled architecture. Such structures made of hydroxylapatit were found to support the growth of mouse osteoblasts.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3