Growth-Packed PPT-A Fiber for the Replacement of Native Asbestos

Author:

Yoon Han Sik

Abstract

AbstractA now type of crystal that can be defined as a “gel crystal” was first made with oligomeric poly-p-phenyleneterephthalainide (PPT-A), associating a large amount of dimethylacetamide (DMAc) liquid molecules, in which catalytic amount of heterocyclic tertiary amine, coupled with alkali metal cations or phosphoric triamidos are incorporated. Under mechanical orientation of the growing PPT-A, before gelation of the reaction “mixture, a hark agar-like gel crystal is formed. It shows a strong optical birefrin,- gence with four clear extinction positions under crossed polarizers when the gel was sectioned either along the direction of PPT-A orientation or perpendicular to it. When the gel formed without orientation it exhibitil speckled birefringence due to a large number of tiny spherulitic crystallites. The degree of crystalline order was similar to that of lyotropic, nematic liquid crystals when evaluated from X-ray diffractograins. The same type of gel crystals with extinction positions were observed in animal and vegetable tissues. It is assumed that the gel crystal has a threedimensionally ordered molecular network structure in which oligo-PPT-A's are arranged end-to-end in parallel lines. The lines are connected laterally, to form sheets, by DMAc bridges that are linear associations of DMAc molecules, which are connected to the oligo-PPT–A at the CONH groups. PPT-A molecular growth and self-ordering occurs within this gel crystal. A similar process gives rise to wool, cotton and ol.her fibrous biological materials.The high molecular weight PPT-A fiber thus grown in the gel crystal is constructed with numerous unit fibrils which connect themselves in a three-dimensional network, that resembles native flax or ranie fibers. The molecular growth of PPT-A in the gel crystal reaches ultra high molecular weight that can rarely be attained in ordinary solvent polyinerization. The gel state of PPT-A fibrils are initially formed spontaneously by selfsubdivision of the gel crystal after the molecular growth of PPT-A. Solid fibrils and fibers are finally fortoed by removing DMAc. The PPT-A gel fibrils thus formed resemble closely “the nascent fibril” of cellulose, and the microstructure and morphology of PPT-A fibrils are consequently very similar to those of native cellulose. The thickness of PPT-A fibrils can readily be controlled by the temperature in the gel crystal before fibril formation. The direction of the fibrils depends on the initial orientation of oligo-PPT-A's immediately before the formation of the gel crystal.This growth-packed PPT-A fibril, that can be produced by a one step chemical reaction, is considered as a good candidate for the replacemerit of native asbestos, because of the lower production cost, microfibrillation property, and inherently high heat-resistance.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3