Electrical Resistivity of an Al-Re-Si Cubic Approximant Phase and Role of Local Environment in Electronic Transport

Author:

Tamura Ryuji,Asao Takayuki,Tamura Mutsuhiro,Takeuchi Shin

Abstract

AbstractIn order to gain an insight into the role of the local atomic environment in the electronic transport of the icosahedral quasicrystal, the electrical resistivity of α-AlReSi, which is the (1/1,1/1,1/1) approximant of the icosahedral phase, has been investigated. Very high resistivity and its pronounced negative temperature dependence have been observed, indicating that the electronic states of the 1/1 cubic approximant are quite similar to those of icosahedral phases. In order to further elucidate which structural entity is responsible for such anomalous transport, a comparison of the electrical resistivity between (1/1,1/1,1/1) and (1/0,1/0,1/0) approximants has been made. The typical transport behavior of icosahedral phases which is also seen in 1/1 and higher-order approximants was not observed in any of the studied 1/0 cubic approximants. The result can be regarded as an implication that the intercluster distance between the TM clusters plays a significant role in the confinement of electronic states.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3