Radiation Induced Microstructural Evolution in Reactor Pressure Vessel Steels

Author:

Odette G. R.

Abstract

AbstractThe evolution of the fine scale microstructural features leading to irradiation embrittlement of reactor pressure vessel steels is described. Copper rich phases undergo accelerated precipitation from supersaturated solution due to radiation enhanced diffusion. In steels with significant trace quantities of copper the precipitates, characterized by high concentrations and small sizes, are the dominant embrittling feature. Precipitate concentrations, sizes, volume fractions and compositions are consistent with thermodynamic and kinetic models that rationalize the effects of a number of irradiation and metallurgical variables. Phosphide and carbonitride phases may also develop along with new manganese nickel rich precipitates, promoted by high nickel contents. These features may lead to severe embrittlement at high fluence even in low copper steels. While their detailed identity and characteristics are not known, defect cluster-solute complexes with a range of thermal stability are important both directly and indirectly; for example, in mediating flux and temperature effects. In conjunction with the application of state-of-the-art characterization methods, development of advanced modeling tools will be needed to address a number of outstanding issues.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 121 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3