Improving Adhesion of Polytetrafluoroethylene to Aluminum, Copper, and an Adhesive by Ar+ Irradiation with and without Oxygen Environment

Author:

Koh Seok-Keun,Park Sung-Chul,Choi Chang-Kyu,Song Seok-Kyun,Jung Hyung-Jin,Pae Kook D.

Abstract

AbstractA surface of thin square PTFE samples (1×1×0.2 cm3) was irradiated with Ar+ ion at 1 keV with varying ion dose from 5 x 1014 to 1 x 1017 ions/cm2 with and without oxygen environment. The chemical structure of the surface was examined by XPS. The high resolution XPS spectra showed decreased intensity of the Fls peak and formation of the Ol s peak when irradiated with O2 environment. The Ols peak reached the maximum height at the ion dose of 1 x l015 ions/cm2. The increase of the Ols peak may be attributed to the reaction of oxygen atoms and the free radicals created by Ar+ bombardment. Adhesion tests were conducted on 2000 Å thick Al or Cu film which was evaporated on the irradiated and unirradiated PTFE samples with and without O2 environment. Full detachment of the metal films was observed when PTFE samples were not modified. With regard to the Al film, partial detachment of the film occurred when PTFE was irradiated without O2 environment, regardless of ion dose. No detachment of the film occurred when PTFE was irradiated with O2 environment with the ion dose exceeding 1 x 1016 ions/cm2. As to the Cu film, partial detachment was observed with or without O2 environment when the ion dose was 5 x 1014 ions/cm2. No detachment occurred with or without O2 environment when the ion dose was 1 x 1015 ions/cm2 or greater. The adhesion of an adhesive (Crystal Bond) to the irradiated PTFE samples was found to increase significantly with increasing ion dose up to 1 x 1016 ions/cm2 in tensile tests. It appears that three separate mechanisms are at work in improving adhesion of Cu/PTFE and Al/PTFE system. The first is the surface roughness of PTFE caused by Ar+ bombardment, the second is the chemical changes on the PTFE surface, and the third is a change of the interface between the metal and PTFE. The wettability of the PTFE surface was also determined by dropping water droplets on the modified surfaces. The contact angle between water droplets and the irradiated surface of PTFE samples decreased with ion dose up to 1 x 1015ions/cm2, increased at higher dose, and finally increased to the extent that no wetting was possible at 1 x 1017 ions/cm2. The PTFE samples irradiated with Ar+ without O2 gas environment had lower contact angle than those with O2, even though the samples with O2 developed hydrophilic groups on the irradiated surface. This result on wettability is not consistent with our earlier results on PMMA and PC and is due to the unusually high level of surface roughness of PTFE caused by Ar+ bombardment.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Altering a polymer surface chemical structure by an ion-assisted reaction;Journal of Adhesion Science and Technology;2002-01

2. Ceramic surface modification by a keV ion irradiation;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;1999-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3