Deformability Improvements of Li2-Type Intermetallic Compounds

Author:

Izumi Osamu,Takasugi Takayuki

Abstract

AbstractIntermetallic compounds are usually so brittle that they simply cannot be efabricated into useful shape components. Recent developments of physical and metallurgical principles for the structural materials have led to the conclusion that the deformability of several intermetallic systems can be substantially improved. Among them, in this lecture, the nature of grain boundary structure in L12-type intermetallics is first discussed.Then, the possibilities and instances to overcome the brittleness are shown. Polycrystalline L12 -type Ni3Al, even prepared from high purity metals, exhibits brittle intergranular fracture. On the other hand, single crystals of Ni3Al are ductile even at room temperature. Thus, it is said that the grain boundaries of this alloy are intrinsically weak. Our recent analyses showed that there exist several configurations of atomic bonds, resulting in the heterogeneous electronic environments which can be regarded as “cavities”. The drastic ductility improvement of Ni3Al alloy by a small boron addition, which was found in 1979, can be interpreted as segregated boron atoms at grain boundaries to modify the electronic environments of boundaries and to reinforce boundary cohesion, thus suppressing intergranular fracture. From a quite similar point of view, modification of boundary structures can be achieved by substituting proper elements for the constituents of compounds or by selecting atom combinations of compounds. Thus, the ductility of Ni3Al could be improved by substituting a few percent of Mn or Fe for Al. Also, by selecting atom combination, several L12-type alloys such as Co3Ti, Cu3Pd, Ni3Mn and Ni3Fe have been found as ductile intermetallics.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3