Optimized High Strength Mortars: Effects of Chemistry, Particle Packing, and Interface Bonding

Author:

Roy Della M.,Nakagawa Zenbe-E,Scheetz Barry E.,White Elizabeth L.

Abstract

AbstractHigh strength mortars have been prepared utilizing optimized particle packing, reactive substituents to modify the chemistry- and addition of superplasticizers. Otherwise the processing techniques were conventional. The compressive strengths of one prototype material after curing at temperatures from 38 C to 250 C were above 70 MPa. The strengths were particularly high at 175 C (195 MPa) where excellent bonding had developed; one chemically modified material reached 245 MPa. The specimens cured at 175 and 250 C (after a lower temperature precure) developed their strengths rapidly, having reached essentially full strength by 7 days. At lower curing temperatures the strength increased with time, apparently still increasing at 56 days (106 MPa) for the materials cured at 38 C. Modified mixtures were prepared using different proportions of silica fume, MgO, different ratios of sand to fine components, and different sand mineralogy and other admixture proportions for rheological optimization. Microhardness, dynamic Young's modulus, density, and permeability were measured in addition to strength. Matrix chemistry and sand mineralogy and proportions affected the strength. Matrix-aggregate bond was very important. The above types of cementitious materials have potential importance for applications where they may be exposed to extreme conditions and to temperature cycling.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference14 articles.

1. 13. Roy D.M. , Grutzeck M.W. , Mather K. , Buck A.D. , in Battelle, Office of Nuclear Waste Isolation Rept. ONWI-368.

2. 12. Roy D.M. , White E.L. , Nakagawa Z. , in Temperature Effects in Concrete ASTM STP 858, Ed., Naik T.R. (ASTM, Philadelphia, in press).

3. Flexural strength and porosity of cements

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3