In-Vivo Degradation of a Poly(Propylene-Fumarate) Biodegradable, Particulate Composite Bone Cement

Author:

Frazier Daveed D.,Lathi Vijay K.,Gerhart Tobin N.,Altobelli David E.,Hayes Wilson C.

Abstract

AbstractWe have developed a biodegradable particulate composite bone cement consisting of a poly(propylene glycol-fumarate)-(methylmethacrylate) matrix mixed with calcium carbonate and tricalcium phosphate particulates. Previous ex-vivo studies suggest that this system provides sufficient strength for a number of potential clinical applications including structural reinforcement of osseous defects, supplementation of internal fixation of age-related fractures, and delivery of antibiotics to treat osteomyelitis. Ex-vivo degradation assays have also shown that the cement approximates physiologic conditions of bone remodeling as it degrades. In order to evaluate the in-vivo responses to this material, we implanted cement specimens subcutaneously in rats for up to 84 days. Compressive strength of the subcutaneous implants increased linearly through day 21 to 4.91 MPa, then decreased linearly by day 84 to less than 1 MPa. We conclude that this PPFMMA system is biocompatible and biodegradable, and has the potential for use as an orthopedic bone cement. Future studies will be directed toward characterizing the intraosseous histological response and at coordinating the rate of cement degradation with bony ingrowth.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3