Magnetron Sputtered Ti-Basis Hard Material Coatings on Thermoplastic Polymers for Applications in Particle Sensitive Environments

Author:

Lugscheider E.,Barwulf S.,Barimani C.,Riester M.,Hilgers H.

Abstract

AbstractEven under demanding environments, like clean rooms, polymers are already used in different-ranges of applications. The wear and particle generation within a specific particle size even under-mechanical stress is a limiting factor. So it was the aim to develop an innovative material-concept, that enables to apply a thermoplastic polymer coated with a thin hard material (thickness-up to 2.5 gm), which also prevents for electrostatical discharges and is usable for complex-bodies. Therefore it was necessary to improve the wear resistance and the adherence between the-polymer and the coating. To take also economic aspects into consideration a two step production-process sequence was required, consisting of the injection moulding process and then the plasma-deposition process including a plasma pre-treatment. In this investigation, poly(butyleneterephthalate)-(PBT) and poly(amide) 6.6 (PA) and polycarbonate (PC) were chosen as substrate-material. The coating materials used, which were mainly deposited by Magnetron Sputter Ion-Plating (MSIP), were on titanium basis (Ti-N). To get detailed chemical information about the-coatings and the interfacial region they were analyzed by X-Ray Photoelectron Spectroscopy-(XPS), additionally Secondary Ion Mass Spectrometry (SIMS) experiments were carried out to-confirm the results. The process parameter's influence on the microstructure, which extend from-amorphous to columnar (crystalline), and the film thickness were analyzed by SEM. It will be-shown and discussed, that it is possible to improve the coating's adherence by plasmapretreatment-as well as to reduce the particle generation after a suitable etching and coating process.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3