Author:
Lanzerotti Y. D.,Sharma J.,Armstrong R. W.,McKenney R. L.,Krawietz T. R.
Abstract
ABSTRACTThe characteristics of TNT (trinitrotoluene) crystals in the fracture surface of Composition B (a melt-cast mixture of TNT and RDX) have been studied using atomic force microscopy (AFM). The size of TNT crystals has been examined by analyzing the surface structure that is exhibited after mechanical failure of the Composition B. The failure occurs when the material is subjected to high acceleration in an ultracentrifuge and the shear or tensile strength is exceeded. AFM examination of the topography of the Composition B fracture surface reveals fracture across columnar grains of the TNT. The width of the columnar TNT grains ranges in size from ∼ 1 μm to ∼ 2 μm. Their height ranges in size from ∼ 50 nm to ∼ 300 nm. Flat TNT columns alternate with TNT columns containing river patterns that identify the direction of crack growth. Steps in the river patterns are a few nanometers in depth. The TNT constitutent fracture surface morphology is shown to occur on such fine scale, beginning from adjacent columnar crystals only 1–2 μm in width, and including river marking step heights of only a few nanometers, that AFM-type resolution is required.
Publisher
Springer Science and Business Media LLC