Evaluation of Potential Printed Wiring Board Materials: Thermoplastic Polyimide + Polymer Liquid Crystal Blends

Author:

Brostow Witold,D'Souza Nandika Anne,Gopalanarayanan Bhaskar,Jacobs Elizabeth G.

Abstract

ABSTRACTPolymer liquid crystals (PLCs) have potential applications as printed wiring board materials and in other aspects of plastic packaging. They have a number of desirable properties such as low moisture absorption, thermoplastic behavior, and low thermal expansivity. However, PLCs can have significant anisotropy in expansivity with negative expansivities in the drawing or molding direction and relatively low positive expansivities in the transverse directions. By incorporating PLCs into an engineering polymer (EP) matrix, in our case a thermoplastic polyimide (TPI), we expected to be able to control the expansivity of the resulting blend – thereby aiding in long-term service performance and reliability. Properties such as low moisture absorption, dimensional stability at elevated temperatures, good adhesion properties, and reworkability were also sought. In this paper, we report on our work to process a TPI/PLC blend and characterize the thermal properties of the blends.An amorphous TPI was chosen over a semicrystalline one because of a thermo-irreversible cold crystallization in the latter, causing undesirable changes in the morphology and poor adhesion to metals. Our evaluations of TPIs through thermally stimulated depolarization (TSD) and temperature-modulated differential scanning calorimetry (TMDSC) reveal sub-glass transition relaxations. We have investigated the selected semicrystalline TPI + PLC pair in the entire composition range, and concluded that the narrower range, up to 30 wt. % of the PLC, is sufficient for the achievement of our objectives. The glass transition temperature Tg = 240°C of the TPI determined by DSC is unaffected by variations of the PLC concentration. The cold crystallization temperature of the semicrystalline TPI decreases with increasing PLC concentration but upon formation of the LC-rich islands this effect becomes smaller. All the blends exhibit degradation onset temperature over 520°C. The thermal conductivity of the amorphous TPI + PLC blends varies as a function of the PLC concentration. The blends show very good film formability. The addition of the PLC improves the processability of the TPI. Thermomechanical analysis (TMA) reveals that the desired control of the expansivity of the blends is also achieved by varying the PLC concentration.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3