Response of a stringlike dislocation loop to an external stress

Author:

Lund Fernando

Abstract

The dynamics of a very thin dislocation loop under the influence of an externally applied, time dependent, stress field is studied in the context of continuum elasticity, where very thin means that the dislocation core is small compared to the loop's typical radius of curvature as well as to any relevant acoustic wavelengths. This is done using energy and momentum conservation as derived from a variational principle for conservative motion of the loop. Energy conservation alone does not suffice, since it is insensitive to forces that do no work. The idea is to have a theory of sources (dislocation loops) interacting with a field (particle displacement) in the same sense that classical electrodynamics is a theory of point-charged particles interacting with the electromagnetic field. The sum of elastic strain and particle velocity generated by a dislocation loop and those generated by external agents are replaced in the action functional whose extrema give the equations of classical dynamic elasticity, thus obtaining a functional of the loop's trajectory. Extrema of the action with respect to variations of the dislocation history select the trajectory that will be followed by the loop under prescribed external stresses. In general, the evolution of the loop will be governed by an integrodifferential equation. Differential equations are obtained when the work done by external forces is much greater than the elastic energy radiated, and the motion of any one point of the loop is affected only by those other loop points in its immediate neighborhood (local approximation). These equations are explicitly written down. They describe the dynamics of a string with mass and line tension of purely elastic origin. The cutoff procedure needed to give meaning to logarithmically divergent expressions is carefully described. The main ideas can be understood in the case of a screw dislocation, which is worked out in detail. The general case with two characteristic velocities, although algebraically more cumbersome, is not essentially different physically. Additional examples include the gliding edge, pinned dislocation segments, and kinks. Results presented are valid in a homogeneous, isotropic, infinite elastic solid, and ways in which these various restrictions might be lifted is discussed.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3