Nucleation, growth, and glass formation in an electron-beam surface-processed Cu47Zr53 alloy

Author:

Huang J. S.,Kaufmann R. N.

Abstract

A Cu47Zr53 alloy was surface processed with a directed-energy electron beam. Optical microscopy, x-ray diffraction, and transmission electron microscopy were used to identify the resolidified phases obtained under systematically varied rapid solidification conditions. The results of the investigation indicate that the underlying bulk substrate always nucleates the growth of a crystalline phase that was identified as a metastable CuZr phase with an ordered bcc (B2) structure. The maximum growth velocity of this phase was determined to be between 0.05 ± 0.02 m/s. This limit was compared under different assumptions to the predictions of a reaction rate growth theory. As the solidification speed increased beyond this limit, the crystalline growth eventually ceased and glass formation occurred in the remaining undercooled liquid under rapid cooling conditions. Crystalline particles also nucleated and grew in the liquid at intermediate cooling rates. These particles had a dendritic morphology and were also a CuZr phase with the B 2 structure.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference29 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3