S/D Engineering for Sub-100 nm MOSFET using Ultra Shallow Junction Formation Technique, Elevated S/D Structure and SALICIDE Technique

Author:

Ohuchi Kazuya,Adachi Kanna,Hokazono Akira,Toyoshima Yoshiaki

Abstract

AbstractSuppression of short channel effect (SCE) by utilizing the technology of formation of ultrashallow junctions is one of the important issues. The annealing process of implantation-damage that induces transient enhanced diffusion during a subsequent thermal process, such as low-pressure chemical vapor deposition (LPCVD) for gate sidewall spacer, should be optimized. To pursuit high performance of MOSFETs, parasitic resistance must be reduced with scaling. On the other hand, it is difficult to decrease the parasitic resistance in the region of contact junction, which is a function of physical constant such as Schottky barrier height of silicide materials and solid solubility of dopant. The elevated source/drain structure reduces parasitic resistance of contact junction due to reduction of resistance of diffusion beneath salicide materials. Cobalt salicide is widely used till 100nm node. However, cobalt salicide has disadvantage in the thermal budget for shallow junction and quantity of silicon consumption during silicidation. Nickel salicide is one of the candidates for successor of cobalt salicide to 70 nm node or above, because of its characteristics of low temperature formation, low silicon consumption and low contact resistivity on p+ junctions. In this paper, S/D engineering will be discussed from the viewpoint of the process integration of sub-100 nm physical gate length complementary metal-oxide-semiconductor field-effect transistor (CMOSFET) device.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference13 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reduction in pn Junction Leakage for Ni-Silicided Small Si Islands by Using Improved Convection Annealing;Japanese Journal of Applied Physics;2009-07-21

2. Rapid Thermal Processing;Handbook of Semiconductor Manufacturing Technology, Second Edition;2007-07-09

3. Reactive Diffusion in the Ni-Si System: Phase Sequence and Formation of Metal-Rich Phases;Defect and Diffusion Forum;2005-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3