Author:
Oguro K.,Asaka K.,Fujiwara N.,Onishi K.,Sewa S.
Abstract
AbstractComposites of perfluorinated polymer electrolyte membrane and gold electrodes bend in response to low-voltage electric stimuli and work as soft actuators like muscles. The composites were prepared by chemical plating. Charge on the electrode induces electric double layer and electro-osmotic drag of water by cation from anode to cathode through narrow channels in the perfluorinated ion-exchange resin. The electro-osmotic flow of water swells the polymer near the cathode rather than anode, and the membrane bends to the anode. The actuator comprises polymer electrolyte, electrodes, counter ion, solvent, lead wires, etc. Each component affects the performance of the actuator. Surface area of electrode and species of counter ion have drastic effect on voltage-displacement response. The response may depend on water channel structure of the polymer electrolyte. Modification of these factors improved the performance and resulted in the deflection over 360 degrees at a film actuator of 10 mm length. A tubular actuator was demonstrated as a multidirectional actuator. These actuators are applicable to artificial muscle, micro robots, or micro medical equipment inside body.
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献