Intergranular Films and Pore Surfaces in Synroc C

Author:

Myhra S.,Segall R. L.,Smart R. ST. C.,Turner P. S,White T. J.

Abstract

AbstractHigh resolution electron microscopy and scanning electron microscopy were used to determine the distribution of intergranular films and microvoids in Synroc C. Diffraction contrast derived from these films, which were 1–3 nm thick, showed then to be ill-defined crystallographically, and they may be described as glassy. Pores were usually several micrometers in extent and occurred principally in rutile-rich areas. The chemical composition of these structural features was obtained using analytical transmission electron microscopy, secondary ion mass spectrometry, x-ray photoelectron spectroscopy and scanning Auger microscopy. Within intergranular films, elemental enhancement of cesium, sodium, potassium and aluminium, and possibly silicon and molybdenum was observed. Enhancement of cesium, sodium, phosphorous, aluminium and silicon was found at triple points. Fracture faces preferentially expose grain boundaries, and dissolution of these surfaces proceeds rapidly at ambient temperatures. During the fabrication of Synroc C, microvoids trap cesium vapour, and after cooling this condenses onto pore surfaces. Recognition of the (simulated) waste species which segregate at grain boundaries and pores, permitted the reinterpretation of published leach data for monolithic and crushed Synroc C.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference8 articles.

1. Continuous-Flow Leaching Studies of Crushed and Cored SYNROC

2. On the detection of thin intergranular films by electron microscopy

3. 6. Myhra S. , Segall R.L. , Smart R. St. C. , Stephenson M. , Turner P.S. , White T.J. , International Seminar on International Waste Management for Final Disposal, 10–14 June, 1985. KFA/PTB Juelich.

4. Microstructural Characterization of Synroc C and E by Electron Microscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3