Transient Diffusional Release from Waste Packages in a Repository in Basalt

Author:

Bensky M. S.,Oliver D. L.

Abstract

AbstractAnalyses of diffusional release of several typical radionuclides in spent fuel from waste packages emplaced in a repository in basalt were conducted to assess the effects of system characteristics and boundary conditions on computed release rates. Radionuclide releases, including spatial and temporal variations that may be present, represent the source term for transport in the geohydrologic setting and are therefore critical to the assessment of repository acceptability.Two mathematical approaches were utilized to determine radionuclide release rate versus time characteristics; (1) an analytical solution for one-deimensional diffusion based upon a Dirichlet (constant-concentration) boundary at the waste form surface; and (2) a finite-element numerical solution based upon a Neumann (zero-flux boundary at the waste form surface. The latter method is suitable for radionuclides such as 129I, whose total inventory in spent fuel could be quickly depleted from the waste form and dissolved in the pore spaces of the packing material surrounding the waste form and which, therefore, cannot be adequately represented by a constant concentration at the waste form (i.e., container) surface.The analysis revealed several system characteristics that are not intuitively obvious. For example, strong sorption in the near-field host rock behaves like a strong mass sink and can yield calculated transient release rates exceeding allowable limits. Similarly, a short half-life effectively removes the radionuclide from the host rock, which induces a steep concentration gradient at the host rock/packing interface and thereby increases the diffusional release rate at that boundary.Typical results for 79Se and 129I are presented to illustrate these effects. The effects of perturbations to key assumptions are shown to indicate the importance of (1) formulating models that accurately represent the physical system and (2) interpreting analytical results carefully to ensure understanding of the capability of the system.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference3 articles.

1. Prediction of Waste Performance in a Geologic Repository

2. 2. NRC (U. S. Nuclear Regulatory Commission), Disposal of Nuclear Radioactive Waste in Geological Repositories, 1983, Title 10, Code of Federal Regulation, Part 60, Vol. 48, No. 120, Final Rule.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3